

SANJOY SAHA

ss.sanjoy.06@gmail.com | linkedin.com/in/sanjoy-saha/ | +1(618)412-1912 | Mishawaka, IN

HIGHLIGHTS

- 5+ years of experience in mammalian cell culture, bioassay development, and upstream process optimization.
- Demonstrated ability in developing 3D cell culture systems, complex *in vitro* models, and engineering biomaterials for vascular and lymphatic morphogenesis.
- Expertise in developing high-efficiency stem cell differentiation methods with proven success in creating disease-relevant cell types
- Extensive experience in imaging techniques, molecular biology methods, high-throughput screening, and translational research for drug discovery and therapeutics.
- Strong technical writing and cross-functional collaboration skills, with 6+ publications and 2 pending patents.

EDUCATION

PhD in Bioengineering: Material Sci & Eng. Aug 2020 – July 2025 (expected)

University of Notre Dame, Notre Dame, IN

Master of Science in Mechanical Engineering

Aug 2018 – Aug 2020

Southern Illinois University, Carbondale, IL

Bachelor of Science in Mechanical Engineering

Bangladesh University of Engineering and Technology, Dhaka, Bangladesh

PROFESSIONAL EXPERIENCE

Graduate Research Assistant

University of Notre Dame, Bioengineering

Aug 2020 – Present

- Engineered synthetic biomaterials to support optimal cell growth and function, resulting in a patent and high-impact publication.
- Designed microphysiological systems to model organ-level interactions and evaluate cellular responses to mechanical and chemical cues.
- Developed and optimized scalable protocols for stem cell (hiPSCs) differentiation into lymphatic endothelial cells (LECs), advancing translational research and disease modeling.
- Established high-throughput screening platform in iPSC-derived cell models for drug discovery and target validation applications.
- Developed and validated cell-based assays to evaluate differentiation efficiency and cellular response to various stimuli, leveraging advanced imaging techniques and microfluidic chips.
- Collaborated with cross-functional teams to secure funding through NSF and NIH grants, showcasing project management and technical writing expertise.

Southern Illinois University, Mechanical Engineering

Aug 2018 – Aug 2020

- Synthesized tunable culture substrates for stem cell differentiation studies, investigating mechanobiological influences on differentiation outcomes.
- Modeled and simulated cell-ECM interactions to investigate underlying causes of heterogeneity in stem cell colonies.

Instructor

Southern Illinois University, Physics

Aug 2019 – Aug 2020

- Contributed to curriculum development and conducted lab sessions on Electro-Magnetism for a class of 100+ students, promoting a hands-on learning approach.

Graduate Teaching Assistant

University of Notre Dame, Mechanical Engineering

Aug 2020 – May 2024

- Mentored 100+ students in courses such as Biomaterials, Solid Mechanics, and Thermodynamics.
- Developed hands-on learning modules to enhance understanding of complex engineering and biological concepts.

Southern Illinois University, Mechanical Engineering

Aug 2018 – Aug 2020

- Provided comprehensive mentorship to 100+ students in courses like Machine Design and Statics; aiding their understanding through practical applications.

KEY PROJECTS

Differentiation of iPSC to LEC | Funded by NSF, NIH

2020 – Present

- Formulated rapid stem cell to lymphatic endothelial cell differentiation protocol using lentiviral transduction of ETS2/ETV2 transcription factors, achieving >85% conversion efficiency with functional vascular network formation within 7 days.
- Pioneered iPSC to LEC differentiation via metabolic programming, yielding cells with 15x higher marker expression and demonstrated efficacy in disease models.
- Analyzed bulk RNA-sequencing data to perform transcriptomic profiling, confirming the high fidelity of differentiated cells by comparing their gene expression signatures against primary LECs.
- Established quality control metrics and standardization of protocols to ensure reproducibility across multiple cell lines.

Spatiotemporal Mapping of Ca2+ and Membrane Potential | Funded by NSF

2022 – Present

- Created reporter cell lines using piggyback transposon, utilized time-lapse live-cell fluorescent imaging to map Ca2+ and membrane potential dynamics during stem cell vascular differentiation.
- Investigated the effects of growth factors and shear stress on Ca2+ and membrane potential dynamics in differentiating cells using a microfluidic chip.
- Developed a novel vascular differentiation protocol by integrating data on membrane potential changes and optimizing it with depolarizing and hyperpolarizing drugs, achieving a 50% increase in stem cell differentiation efficiency into vascular lineages.

Biomaterials for LEC Morphogenesis | Funded by NSF, NIH, AHA

2020 – Present

- Engineered a synthetic biopolymer specifically tailored for optimal growth of lymphatic endothelial cells increasing their sustenance by 15%.
- Led longitudinal studies collecting phenotypic and genotypic data from cultured LECs of various origins, exploring mechanisms behind preservation of cell-type characteristics.
- Investigated the mechanoregulation of LECs within a dynamic viscoelastic hydrogel, revealing how mechanical forces influence their behavior and functionality.
- Developed a tunable microphysiological system to generate lymphatic vessels *in vitro*, offering a platform for therapeutic transplantation and drug screening.

SKILLS

Cell & Molecular Biology: Mammalian cell culture, Stem cell differentiation, Lentiviral transduction, Piggyback transposon, Flow cytometry, ELISA, qRT-PCR, Confocal microscopy, Immunofluorescence, Fluorescent & magnetic assisted cell sorting, Live cell imaging

Bioengineering: Biomaterial preparation and characterization, Microfluidic systems, Complex in vitro models, Traction force microscopy, Bioprinting

Data Analysis & Modeling: MATLAB, Python, ImageJ, GraphPad Prism, ANSYS, SolidWorks, AutoCAD

Professional Skills: Technical writing, Project management, Cross-functional collaboration

LEADERSHIP AND SERVICE

Mentor, Research Experiences for Undergraduates (REU) Program 2022 – present

- Supervised undergraduate students from experimental design and assay execution to data analysis and interpretation.
- Mentored two students who successfully presented their research at the university's annual symposium.

Volunteer, STEM Labs for Middle School Students, DNA Learning Center 2021 – Present

- Organized scientific exhibition for underprivileged middle school students to inspire them towards STEM career

PATENTS

1. Multi-parameter Tunable Synthetic Matrix for Engineering Lymphatic Vessels. Application No. [PCT/IB2024/057334](#)
2. Synthetic Hyaluronic Acid-Dopamine coatings. Application No. [PCT/US2024/040065](#)

PUBLICATIONS (FULL LIST AVAILABLE AT [GOOGLE SCHOLAR](#))

1. Saha, S., Fan, F., Alderfer, L. et al. Synthetic hyaluronic acid coating preserves the phenotypes of lymphatic endothelial cells. <https://doi.org/10.1039/d3bm00873h>
2. Saha, S., Graham, F., Knopp, J. et al. Robust Differentiation of Human Pluripotent Stem Cells into Lymphatic Endothelial Cells Using Transcription Factors. <https://doi.org/10.1159/000539699>
3. Alderfer, L., Saha, S., Fan, F. et al. Multi-parameter tunable synthetic matrix for engineering lymphatic vessels. <https://doi.org/10.1038/s42003-024-06935-7>
Montes, D., Saha, S., jeong, J. et al. Tuning the Morphological Properties of Granular Hydrogels to Control Lymphatic Capillary Formation. <https://doi.org/10.1002/admi.202401037>
4. Amar, K.; Saha, S.; Debnath, A. et al. Reduced Cell-ECM Interactions in the EpiSC Colony Center Cause Heterogeneous Differentiation. <https://doi.org/10.3390/cells12020326>
5. Fan, F., Su, B., Kolodychak, A., Ekwueme, E., Alderfer, L., Saha, S. et al. Hyaluronic Acid Hydrogels with Phototunable Supramolecular Cross-Linking for Spatially Controlled Lymphatic Tube Formation. <https://doi.org/10.1021/acsami.3c12514>
6. Fan, F., Saha, S., & Hanjaya-Putra, D. (2021). Biomimetic Hydrogels to Promote Wound Healing. <https://doi.org/10.3389/fbioe.2021.718377>

7. Hall, E., Alderfer, L., Neu, E., Saha, S. et al. The Effects of Preeclamptic Milieu on Cord Blood Derived Endothelial Colony-Forming Cells. <https://doi.org/10.1101/2023.12.03.569585>
8. Saha, S. et al., Calcium Signaling and Membrane Potential Dynamics Govern iPSC-to-Endothelial Differentiation [in preparation]

PROFESSIONAL DEVELOPMENT

1. 3D Bioprinting Workshop - Carnegie Mellon University **Fall 2022**
2. Strategic Management Initiative, Harper Cancer Research Institute - ND **Summer 2024**